Computing Discrete Minimal Surfaces and Their Conjugates
نویسندگان
چکیده
We present a new algorithm to compute stable discrete minimal surfaces bounded by a number of Þxed or free boundary curves in R, S and H. The algorithm makes no restriction on the genus and can handle singular triangulations. For a discrete harmonic map a conjugation process is presented leading in case of minimal surfaces additionally to instable solutions of the free boundary value problem for minimal surfaces. Symmetry properties of boundary curves are respected during conjugation.
منابع مشابه
Generating Discrete Trace Transition System of a Polyhe-dral Invariant Hybrid Automaton
Supervisory control and fault diagnosis of hybrid systems need to have complete information about the discrete states transitions of the underling system. From this point of view, the hybrid system should be abstracted to a Discrete Trace Transition System (DTTS) and represented by a discrete mode transition graph. In this paper an effective method is proposed for generating discrete mode trans...
متن کاملDiscrete Constant Mean Curvature Surfaces and Their Index
We define triangulated piecewise linear constant mean curvature surfaces using a variational characterization. These surfaces are critical for area amongst continuous piecewise linear variations which preserve the boundary conditions, the simplicial structures, and (in the nonminimal case) the volume to one side of the surfaces. We then find explicit formulas for complete examples, such as disc...
متن کاملInfinitesimally flexible meshes and discrete minimal surfaces
We explore the geometry of isothermic meshes, conical meshes, and asymptotic meshes around the Christoffel dual construction of a discrete minimal surface. We present a discrete Legendre transform which realizes discrete minimal surfaces as conical meshes. Conical meshes turn out to be infinitesimally flexible if and only if their spherical image is isothermic, which implies that discrete minim...
متن کاملMinimal surfaces from circle patterns: Geometry from combinatorics
The theory of polyhedral surfaces and, more generally, the field of discrete differential geometry are presently emerging on the border of differential and discrete geometry. Whereas classical differential geometry investigates smooth geometric shapes (such as surfaces), and discrete geometry studies geometric shapes with a finite number of elements (polyhedra), the theory of polyhedral surface...
متن کامل1 Unstable periodic discrete minimal surfaces
In this paper we define the new alignment energy for non-conforming triangle meshes, and describes its use to compute unstable conforming discrete minimal surfaces. Our algorithm makes use of the duality between conforming and non-conforming discrete minimal surfaces which was observed earlier. In first experiments the new algorithm allows us the computation of unstable periodic discrete minima...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Experimental Mathematics
دوره 2 شماره
صفحات -
تاریخ انتشار 1993